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ANALYSIS OF MIXING OF COAXLAL STREAMS OF DISSIMILAR 

FLUIDS INCLUDING ENERGY-GETERATION TERMS 

By Herbert Weinstein and Carrol l  A. Todd 

A solut ion t o  the problem of t h e  mixing of coaxial  flows of diss imilar  
f l u i d s  i s  presented. The solut ion i s  numerical i n  nature and permits large var i -  
a t ions  of density, veloci ty ,  and temperature of the  f l u i d s .  It i s  v a l i d  close t o  
or away f r o m t h e  flow i n l e t .  

The system considered i s  t h a t  of a heavy inner f l u i d  surrounded by a l i g h t  
outer stream t h a t  i s  i n f i n i t e  i n  extent .  The fluids may have any i n i t i a l  tem- 
perature and veloci ty  prof i les ,  and the  flow may be laminar o r  turbulent  i n  na- 
t u r e .  Provision i s  made f o r  energy generation throughout the  flow f i e l d .  A 
term i s  included t o  permit only a x i a l  expansion of the heat-generating f l u i d  t o  
approximate the e f f e c t  of a cy l indr ica l  w a l l  a t  a r e l a t i v e l y  large radius.  

Results a r e  calculated f o r  various cases t o  compare t h e  analysis  with two 
s e t s  of experimental data, t o  i l l u s t r a t e  the e f f e c t  of an approximation of the  
case with a boundary on the  outer  stream, and t o  show the e f f e c t  of i n i t i a l  input 
value on the bulk accelerat ion of the  inner-stream f l u i d .  The following r e s u l t s  
were obtained: The calculated r e s u l t s  agreed well  with two s e t s  of published 
data. A d i f fe ren t  value of the  turbulence r e l a t i o n  was found f o r  each data s e t .  
The boundary w a l l  assumption gave r e l a t i v e l y  s t r a i g h t  streamlines far from the 
mixing region f o r  cases w i t h  heat generation. The containment f a c t o r  generally 
increased with increasing molecular-weight r a t i o  and decreased f o r  increasing 
i n i t i a l  veloci ty  r a t i o .  I n t e r n a l  heat generation decreased containment of t h e  
inner-stream f l u i d .  

INTRODUCTION 

A solut ion t o  the  problem of t h e  m i x i n g  of coaxial  flows of dissimilar 
f l u i d s  i s  presented i n  t h i s  report .  T h i s  work has been engendered by t h e  recent 
i n t e r e s t  i n  the  invest igat ion of the coaxial-flow gaseous reactor  (ref.  1) and 
cooled plasma j e t s  ( r e f .  2 ) .  The solut ion i s  numerical i n  nature and permits 
la rge  i n i t i a l  var ia t ions of density, veloci ty ,  and temperature of t h e  f lu ids ,  
and it i s  v a l i d  close t o  the  flow i n l e t  as wel l  as far downstream. 

There i s  a grea t  deal  of l i t e r a t u r e  on work on coaxial  flows of f l u i d s .  
This previous work, however, i s  usually l imi ted  i n  a t  ].east one of severa l  ways 
t h a t  prevents i t s  use f o r  the  aforementioned problems. The most common 



l imi t a t ion  of the  previous work i s  the  p r o f i l e  s i m i l a r i t y  assumption ( r e f .  3). 
T h i s  assumption limits v a l i d i t y  t o  the  region pas t  t h e  po ten t i a l  core. I n  some 
of the  analyses transformations a r e  made t o  obtain closed-form solut ions that 
severely l i m i t  t he  va r i a t ion  i n  flow var iab les .  I n  reference 4 a closed-form 
so lu t ion  f o r  t h i s  problem i s  obtained, but t h e  l i n e a r i z a t i o n  of transformed equa- 
t i ons  t h a t  i s  employed again limits the  va r i a t ion  i n  flow variables .  The numeri- 
c a l  approach i s  taken i n  t h i s  ana lys i s  t o  avoid these  l imi ta t ions .  

The system considered here and shown i n  f igu re  1 i s  t h a t  of a heavy inner  
f l u i d  of c i r cu la r  cross sec t ion  surrounded by a l i g h t  outer stream i n f i n i t e  i n  
extent .  
flow may be laminar o r  turbulent  i n  nature.  F’rovision i s  made f o r  energy gener- 
a t ion  throughout t he  flow f i e l d  as a prescr ibed funct ion of geometric loca t ion  
and concentration of t he  inner-stream f l u i d .  A term is  included i n  t h e  momentum 
equation t o  force an axial expansion of t he  heat-generating f l u i d  t o  approximate 
the  e f f e c t  of a cy l ind r i ca l  wall at a r e l a t i v e l y  la rge  radius. 
proper t ies  of t he  f l u i d s  a r e  considered t o  be independent of temperature but  a r e  
permitted t o  vary with t h e  concentration of t h e  f l u i d .  No consideration has been 
given t o  the  hydrodynamic s t a b i l i t y  of t h e  system or t o  t he  aerodynamic compress- 
i b i l i t y  e f f ec t s .  

The f l u i d s  may have any in i t i a l  temperature and ve loc i ty  p ro f i l e s ,  and 

The t ranspor t  

The ana ly t i ca l  port ion of t h i s  work follows c lose ly  the  methods establ ished 
previously by t h e  authors i n  reference 5. The modifications of the  ana lys i s  a r e  
pr imari ly  the  inclusion of t he  energy equation and t h e  e f f e c t  of temperature var- 
i a t ion ,  along with an extension t o  include turbulent  flow by the  introduct ion of 
turbulent  t ranspor t  p roper t ies  ( r e f .  6) .  The numerical techniques employed i n  
this report ,  however, a r e  d i f f e ren t  f romthose  i n  reference 5 and a r e  s i g n i f i -  
cant ly  superior.  
i n  t he  so lu t ion .  

These new techniques provide f o r  g rea t e r  accuracy and s t a b i l i t y  

The r e s u l t s  of this inves t iga t ion  a r e  expressed i n  terms of a parameter de- 
f ined  i n  reference 5 ca l l ed  the  containment f a c t o r .  T h i s  is  the  r a t i o  of t h e  
amount of inner-stream f l u i d  contained between two planes t ransverse t o  the  a i s  
compared t o  t he  amount t h a t  would have been present i f  there  had been no acceler-  
a t ion  of the inner  stream. This parameter i s  inves t iga ted  i n  regard t o  i t s  r e -  
sponse t o  varying i n i t i a l  conditions such as ve loc i ty  r a t i o ,  molecular-weight 
r a t i o ,  and energy-generation r a t e .  

The d i rec t ion  taken i n  t h e  development of this analysis  has been, i n  part, 
d ic ta ted  by the  lack  of experimental data f o r  coaxial  flows of f l u i d s  with dif- 
f e ren t  dens i t ies  and i n i t i a l  temperatures. Reference 5 i s  concerned with the  
isothermal, laminar coaxial  flow of f l u i d s  of d i f fe ren t  dens i t ies  and cons t i tu tes  
t he  first s tage of this analysis .  
both a laminar and a turbulent  case were compared with experimental data from the  
isothermal air-bromine system of reference 6. I n  the  present report ,  t he  r e s u l t s  
of references 5 and 6 a r e  summarized, t he  ana lys i s  i s  extended t o  the  general  
case of coaxial  flow with prescribed i n t e r n a l  heat generation, and the  numerical 
r e s u l t s  f o r  t he  case of coaxial  f l o w  of hot and cold airs t reams are  checked 
against  t h e  experimental r e s u l t s  of reference 7. In this manner, t h e  system of 
momentum and d i f fus ion  equations and t h e  system of momentum and energy equations 
a re  checked separately.  This approach was chosen because no experimental data 
could be found f o r  t h e  coaxial-flow system with f l u i d s  of both d i f f e ren t  

This work was extended t o  turbulent  flow, and 
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molecular weights and temperatures. 
sis with the two special cases would imply the validity of the general solution 
within the limits set by the assumptions made for the physical properties of the 

It is felt that good agreement of the analy- 

fluids. 

SYMEOLS 

finite-difference-equation coefficients 

matrix coefficients 

wall-assumption constant, equal to either 1 or 0 

constants, i = 1 to 4 

concentration (mole fraction) of inner-stream component, C(Q,Z) 

specific heat, cp(Q,z), c -1- (1 - C)C~,~ 
initial cp ratio 

molecular diffusivity, D( Q, z) 

inner and outer flow factor to simulate turbulent flow 

flow factor for turbulence 

energy-generation term, G(P,cp,r,z,u,T,c) 

function in energy-generation term 

enthalpy 

containment factor, see eq. (45) 

t hemal conductivity 

initial conductivity ratio 

length 

molecular weight, a constant 

molar density of fluid 

nwber of pobts 

Frandtl number, cpp/k 

Reynolds number, ppr/p 

radial length variable, r ( $, z ) 
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thickness of mixing region 

i n i t i a l  radius of inner  stream 

Schmidt number 

temperature, T( $, z) 

i n i t i a l  temperature r a t i o  

axial v e l o c i t y  component, u(q,z) 

molecular volume 

molecular volume r a t i o  

r a d i a l  ve loc i ty  component 

m a s s  f r a c t i o n  

dummy variable  

a x i a l  length var iable  

pres c r  l b  e d tolerance 

(m&) - 1 
i n i t i a l  ve loc i ty  d i s t r i b u t i o n  

i n i t i a l  concentration d is t r ibu t ion  

i n i t i a l  temperature d i s t r i b u t i o n  

eddy d i f f u s i v i t y  

constant i n  turbulence r e l a t i o n  

viscosi ty ,  p( $, z) 

i n i t i a l  v i scos i ty  r a t i o  

mass density 

stream function 

Subscripts : 

points on mesh 

IlBX maximum 
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min minimum 

ref  reference 

t turbulent property 

0 

1 inner stream 

2 outer stream 

11 s e l f  diffusion 

1 2  binary diffusion 

Superscripts : 

i n i t i a l  conditions (z = 0 )  

- normalized t o  i n i t i a l  inner-stream value, 

transformed energy term 

dummy variable 

- - 

* 

see eq. ( 7 )  

ANALYSIS 

The derivation of the equation s e t  t h a t  describes the  coaxial-flow system 
i s  presented i n  t h i s  sect ion.  The numerical methods employed i n  the  solut ion of 
these equations a re  described i n  the appendix. 

Assumptions and Restr ic t ions 

The assumptions and r e s t r i c t i o n s  made i n  deriving the equation s e t  a re  given 
by the following l i s t ,  but not necessar i ly  i n  order of importance; 

(1) The e n t i r e  flow f i e l d  i s  a t  a constant pressure, and the  s t a t i c  and 
t o t a l  temperatures a r e  considered equal. 

( 2 )  There i s  a x i a l  symmetry i n  the  flow system. 

(3) The following molecular f l u i d  propert ies  a r e  independent of temperature : 
thermal conductivity, viscosi ty ,  d i f fus iv i ty ,  and heat capacity. 

(4)  Thermal diffusion i s  neglected. 

(5) The f l u i d s  mix ideal ly;  there  i s  no pressure, temperature, or volume 
change on mixing. 

( 6 )  There i s  a steady s t a t e  i n  the  system. 
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( 7 )  The eddy d i f f u s i v i t i e s  of heat, mass, and momentum a r e  equal. 

(8) The normal boundary-layer assumptions a r e  used; t h a t  i s ,  au/ar >> au/az, 

( 9 )  The assumption a$/& >> aq/az, which follows from u >> v, i s  s t a t e d  

u >> V, >> &/az, &/ar >> &T/az, e t c .  

separately because it i s  used again i n  a transformation of coordinates. 

Other assumptions a r e  made, mainly i n  the  evaluation of physical  p roper t ies ,  
t o  obtain a so lu t ion  from t h e  equation s e t .  These a r e  discussed ind iv idua l ly  
as they a re  used. 

Derivation of Laminar-Flow Equation Set 

The following cont inui ty ,  momentum, diffusion,  and energy equations a re  
given f o r  the  

Continuity f 

Momentum: 

Diffusion : 

Ehe rgy f 

Each equation 
f i e l d  because 

system shown i n -  f igure  1: 

ah 1 a ( ,,> + G (4) 
ah 
dr Z =  pr Z r k ~  v - + u  

i s  wr i t t en  for variable  densi ty  and appl ies  over the whole flow 
the  gases form a continuum. 

The cont inui ty  equation already contains t h e  s teady-state  and axisymmetric 
assumptions. 
Stokes equation with the  steady-state,  constant-pressure, axisymmetric, and 
boundary-layer assumptions. The diffusion equation ( r e f .  81, which contains t h e  
s teady-state  and axisymmetric assumptions but no assumptions as t o  t he  va r i a t ion  
i n  density,  i s  cor rec t  f o r  large density var ia t ions .  No pressure d i f fus ion  i s  
considered here, as can be noted from equation (1). The energy equation contains 
the  axisymmetric and s teady-state  assmpt ions  and includes a heat-generation term 
t h a t  is ,  as yet ,  unspecified.  

The momentum equation i s  the  r e s u l t  of simplifying the  Navier- 
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Since the  fluids mix ideal ly ,  the  density a t  a point i s  equal t o  t h e  sum of 
the  p a r t i a l  dens i t ies  a t  t h a t  point .  
density can be expressed as the  molar density mult ipl ied by t h e  molecular weight, 
p = mN/T, or, with 

The pressure i s  constant,  and t h e  mass 

m = mlc + m~(1 - e ) ,  as 

p = y [(z - l)c + ;] 
With the  subs t i t u t ion  p = (m1/m2) - 1, equation (sa) becomes 

The mass f r a c t i o n  w is  r e l a t e d  t o  the  mole f r ac t ion  c with 

and 

Introducing the  dimensionless quant i t ies  

and sub 

- U u = -  
u1,o 

k E=--  
k1,O 

t i t u t i n g  them and quation 

- h h =  
T1, ocp, l , o  

-A - 
cp - Cp,l,O 

(a) and (6b) i n t o  equations ( 
t h e  following dimensionless equations : 

Continuity: 

( 7 )  1 
t o  (4) y i e l d  

7 



Momentum I 

Energy : 

- - 
where G is  s t i l l  unspecified.  The stream funct ion i s  defined by 

7 - p c  + 1 - -  r v -  - -  a$ 
a r  T 

This s a t i s f i e s  t h e  dhens ion le s s  cont inui ty  equation. 

The momentum, diffusion,  continuity,  and energy equations a re  now trans- 
formed t o  the  T,$-plane with t he  r e l a t ions  

Transforming the  momentum, diffusion,  and energy equations (eqs.  (9)  t o  (11)) 
with equations ( 1 2 )  produces the  following equations f 

Momentum t 
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Diffusion : 

Energy : 

- 
Because of the cy l indr ica l  geometry, r does not drop out of the equations as 
occurs with Cartesian geometry ( r e f .  6) ,  and a r e l a t i o n  between q and r must 
be - carr ied along with the  transformed equation s e t .  Since a$/&- i s  zero a t  
z = 0 and considered very small elsewhere, it i s  neglected here. From equa- 
t ions  (12)  i s  obtained 

- 

where * denotes the dummy variable .  This r e l a t i o n  will be used f o r  the  i n i t i a l  
conditions since they a r e  expressed as functions of r. For the  integrat ion,  i n  
which r i s  a dependent var iable ,  

- 
- 

i s  used. 

The energy equation i s  now a l t e r e d  t o  remove the enthalpy term. Along a 
streamline 

h = h(T,c) T = T ( z )  

c = c ( z )  cp = cp(c) 

The function e,(.) i s  taken as 

e,(.) = ccp,1 + (1 - c)cp,2 ( 2 0 )  

T h i s  i s  a molar average of a quantity t h a t  would normally be taken as a mass 
average. T h i s  approximation provides a l i n e a r  var ia t ion  of CP with c that 
s implif ies  t h e  following argument. It i s  a good approximation when the  molecular 
weights a r e  close together  but becomes poor as they diverge. It i s  a l s o  t r u e  
tha t  

9 



and 

but 

(g)c = 

and 

It is seen from equations (18) that 

a -& Cp,l - cp,2 = constant 

J dT* = m c p , 1  - cp,2) ST Tref 

Combining equations (21) to (23) and introducing the dimensionless groups in 
equation (7) yield 

The term nr becomes, for a numerical solution, the change 
tween the mesh points along a streamline. 

(24) 

in temperature be- 

For the purposes of this report, the generation term is defined as 
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o r  

where 

C b4 
F 0.1 -t z H = bl + b2 - + b3r2 + 

and the  b ' s  a r e  input parameters. The b l  term provides f o r  constant heat 
generation throughout t h e  flow f i e l d  and e s s e n t i a l l y  s e t s  t h e  l e v e l  of heat in -  
put.  The b2 term provides f o r  energy generation i n  just the  Inner stream, and 
the  coeff ic ient  corrects  f o r  l o c a l  density var ia t ions  due t o  the  r i s i n g  
temperature leve ls .  Radial var ia t ions  of parabolic form a r e  provided f o r  the  
b3 term, and the  b4 term provides f o r  an inversely proportional a x i a l  depend- 
dence i n  t h e  heat generation. T h i s  form of the  generation term allows f o r  both 
s p a t i a l  and species v a r i a t i o n  i n  the  l o c a l  heat-generation r a t e .  Because of this 
feature ,  many d i f fe ren t  systems can be described or approximated by the equa- 
t ions .  Among these a r e  an a r c - j e t  gaining heat energy by recombination (species- 
dependent generation) and a gaseous reactor  with f i s s i o n  occurring i n  one gas 
(species-dependent generation) and rad ia t ive  absorption i n  the  second (outer)  
gas (approximated by s p a t i a l l y  dependent generation).  

l/F 

The energy equation becomes, upon subs t i tu t ion  of equations (24) and ( 2 5 ) ,  

/ h 

U.1 \ 
For cases without i n t e r n a l  heat generation the  streamlines fa r  from the  mix- 

ing region are  unaffected by the mixing process, and the r e s u l t s  f o r  the system, 
which i s  i n f i n i t e  i n  the  radial direct ion,  apply d i r e c t l y  t o  the  case i n  which 
both streams a r e  bounded or contained within a cylinder. In the  unbounded case 
with i n t e r n a l  heat generation, however, the  streamlines bend outward i n  the  ra- 
d i a l  d i rec t ion  because a l l  the  expansion takes place rad ia l ly .  The case of 
bounded coaxial  flow with i n t e r n a l  heat generation cannot be approximated with 
the  unbounded case because even far f r o m t h e  mixing region the  s t r e a m l b e s  a r e  
not s t r a i g h t  i n  the unbounded case. For systems i n  which there  i s  energy gener- 
a t i o n  i n  e i t h e r  or both of the f l u i d s ,  it i s  necessary t o  modify the  equation 
s e t  s o  t h a t  it can be applied t o  a system t h a t  is  f i n i t e  i n  t h e  radial direct ion.  
To do this rigorously would require t h e  conversion of the  problem from an 
i n i t i a l - v a l u e  t o  a boundary-value problem, but t h i s  would g r e a t l y  complicate the  
numerical methods involved i n  t h e  solution. For the  coaxial-flow reactor  and 
other systems i n  which t h e  i n t e r e s t i n g  region of flow i s  close t o  t h e  center l ine 
and far from the  radialboundary,  t h i s  boundary can be approximated by a s t r a i g h t  
streamline a t  a constant radius. The most important w a l l  condition, t h a t  of 

11 
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zero r a d i a l  veloci ty ,  i s  s a t i s f i e d  while t h e  conditions of l e s s e r  importance, 
such as zero a x i a l  veloci ty ,  which a r e  more d i f f i c u l t  to s a t i s f y ,  a r e  ignored. 
I n  order to maintain approximately s t r a i g h t  streamlines far from t h e  center l ine 
f o r  simulation of channel flow, a term i s  added to the  momentum equation t h a t  
forces a l l  t h e  gas expansion due to energy generation to o c c u  along a stream- 
l i n e .  This addi t ion provides a good descr ipt ion of t h e  expansion process far 
from the mixing region, where the  gradients  of Velocity and concentration a r e  
s m a l l ,  but it i s  only an approximation in t h e  mixing region, where the  gradients 
a r e  large.  I n  the  i n t e r e s t  of t r a c t a b i l i t y  of t h e  equations, however, t h e  term 
i s  defined i n  the  following manner. For cont inui ty  along a streamline 

( 2 7 )  
- 

pu  = constant 

Different ia t ing equation ( 2 7 )  r e s u l t s  i n  

The dependence of p 
generation i n  no way 

on concentration can be neglected here, since the energy 
a f f e c t s  concentration. Then 

or 

Only the temperature 
t ion ,  and the energy 

r i s e  due t o  energy generation i s  included i n  this deriva- 
equation along the streamline can be wr i t ten  as 

Combining equations ( 2 8 )  and (29)  y ie lds  

which i s  -the desired term f o r  the  a x i a l  expansion of the  f l u i d .  This term is  
added t o  the shear-force term in the  momentum equation (14)  t o  y i e l d  

where the f a c t o r  a i n  
allow f o r  the  inclusion 

the  axial-expansion term i s  a constant equal t o  1 or 0 to 
or the  omission of this term. Equation (31) may be 
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- 
rewrit ten,  with the  def in i t ion  of E ,  i n  the  form 

Equations (15), (17), (18), (26), and ( 3 2 )  form the  s e t  t o  be integrated 
from the i n i t i a l  conditions. 

- 
The dimensionless t ransport  properties D, c, and E a r e  evaluated from the  

r a t i o  of t h e  values of the  pure components and a l so ,  i n  the  cases of v i scos i ty  
and conductivity, from an elementary mixing equation. 
l o w  molecular-weight r a t i o s  but probably becomes qui te  poor a t  higher r a t i o s .  
This m i x i n g  equation i s  

This r e l a t i o n  i s  good f o r  

m 
Cml + ( 1 - c)mZ x =  
- 
x1,o X2,O 

(33) 

when expressed in terms of the d " y  var iable  x ( r e f .  9 ) .  For viscosi ty ,  the  
use of equation (33) r e s u l t s  i n  

- p c  + 1 
P =  1 - c  (I3 + l ) c  + v 

p2 

and, f o r  conductivity, 

pc + 1 
( P  + l ) c  + 7 

- 
k =  1 - c  

k2 

(34) 

(35) 

The dimensionless d i f f u s i v i t y  i s  calculated from the Gi l l i l and  equation i n  
the following manner: 

Substi tuting Tz = V2/V1 and ml/m2 a p + 1 yie lds  

The dimensionless 
argument as shown 

d i f f u s i v i t y  can a l s o  be derived from a Lennard-Jones p o t e n t i a l  
i n  reference 5. 
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The mixing l a w  f o r  t he  heat capaci ty  of t h e  f l u i d  i s  expressed by equa- 
t i o n  (20) .  
ponent s . It i s  a simple molar average of t h e  spec i f i c  heats  of t he  pure com- 

Turbulent-Flow Extension 

The preceding development f o r  t he  case of coaxial  l a m i n a r  flow i s  extended 
t o  include t h e  case of turbulent  f l o w  by subs t i t u t ing  turbulent  t ranspor t  prop- 
e r t i e s  for t he  laminar ones. The turbulent  t ranspor t  propert ies  a r e  defined as 

\ 

Dt = D ( l  -+ $) (37)  

where E i s  t h e  eddy d i f fus iv i ty .  The eddy d i f f u s i v i t y  m u s t  be evaluated from 
a physical argument and experimental data.  
accommodation coef f ic ien t  argument that s t a t e s  (ref. 3, p. 592) 

The p a r t i c u l a r  argument chosen i s  t h e  

or t h a t  the  eddy d i f f u s i v i t y  i s  proportional t o  t h e  thickness of t he  mixing r e -  
gion rm and the  ve loc i ty  decremect across the  mix ing  region. The mixing region 
thickness can be expressed as a funct ion of t h e  axial posi t ion1 

For simplici ty ,  

f(T) = 9 

( r e f .  3, p. 596) and, therefore ,  

rm = roP (39) 

Since the  region of i n t e r e s t  f o r  these calculat ions i s  close t o  the  i n l e t  and not 
much past  t he  po ten t i a l  core, umX - w n  i s  taken t o  equal t he  maximum veloc i ty  
decrement a t  the  i n i t i a l  face: 

Combining equations ( 3 7 )  t o  (39)  y ie lds  

E = KrOul,,z -m- Iu2 -11 

14 
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.. . .. 

It i s  assumed t h a t  t h e  outer  stream w i l l  a f f e c t  the  turbulence l e v e l  more than 
t h e  inner  stream. For t h i s  reason, t h e  turbulence l e v e l  f o r  t h e  system is  taken 
as 

and 

o r  

The term p 2  O E / P ~ , O  i s  a l s o  ca l l ed  the  flow f a c t o r  FF. It i s  seen t h a t  t h e  
flow f a c t o r  is a funct ion of o n l y  the  i n i t i a l  conditions, the  axial posi t ion,  and 
the  two experimentally determined constants K and m. 

The flow fac to r  i s  constant with radius  a t  any a x l a l  posi t ion.  The l o c a l  
values of t he  turbulent  t ranspor t  propert ies  a r e  functions of only t h e  flow- 
f a c t o r  var iables  and the  concentration. The dependence on concentration of t he  
turbulent  property values Fs taken t o  be t h e  same as t h a t  used f o r  t h e  laminar 
values.  
ues a r e  

When equation (27)  i s  used, t h e  l o c a l  turbulent-transport-property val-  

> 
- pc + 1 

p + l ) c  + 1 - c  P t  = ( 

+ FF (1 + FF)E2 

It can be seen by expanding t h e  dimensionless groups that 
constant across a radius, but E becomes a function of t h e  concentration. It 
is f e l t  t h a t  thls t m e  of representat ion i s  somewhat more correct  than t h a t  of 
holding E constant across a radius .  

p 2 , 0 ~ / p 2  can be held 
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For the  cases with energy generation, t h e  temperature l e v e l  of the system 
r i s e s ,  sometimes t o  a considerable extent.  The density of t h e  f lu ids  decreases 
with increasing axial distance, and 'che turbulence l e v e l  of t h e  system i s  af-  
fected.  I n  these cases, the  density terms i n  t h e  mixing e uations f o r  the  tu r -  
bulent t ransport  propert ies  a r e  modified t o  include t h e  1YT var ia t ion  of den- 
s i t y  i n  the following way: 

7 

1 + FF 

J 

The experimental r e s u l t s  obtained from t h e  l i t e r a t u r e  a r e  used t o  e m l u a t e  
K, the  constant i n  equation (42), by curve-f i t t ing the data. 
i s  varied u n t i l  the  bes t  f i t  of the  experimental data i s  obtained. The d i f fe ren t  
values of K f o r  each run a r e  then averaged t o  obtain a s ingle  value of K t o  
use i n  the  calculat ions.  

The value of K 

Some of t h e  r e s u l t s  a r e  presented i n  terms of the  containment f a c t o r  

1 I = -  
L 

- 
(45) 

from reference 3. T h i s  parameter i s  the  amount of inner f l u i d  present i n  a cy- 
l i n d r i c a l  sect ion of some very large radius and length L divided by the amount 
of inner-stream f l u i d  t h a t  would have been present i n  the  sect ion had there  been 
no accelerat ion of the  inner  stream. This containment f a c t o r  may vary from a 
maximum of 1 (no accelerat ion)  t o  a minimum of 1/ii2. 

Program Input 

The input t o  the computer program i s  the  following: 

(1) The i n i t i a l  veloci ty  and temperature p r o f i l e s j  when slug flow i s  
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desired, only the velocity and temperature ratios are needed 

The molecular-weight ratios of the two streams 

The physical properties of the two f lu ids  as ratios, u2, v2, E2, and 
P, 2 C 

The initial values of dlmemionless transfer groups, Rel,o, Prl,~, and 
SCl,O 

The turbulence-relation constants, m and FF 

The constants in the internal heat-generation term, bi 

RESULTS AND DISCUSSION 

Accuracy and Limitations 

accuracy of this analysis can be estimated in two ways. First, the size 
of the various terms discarded in writing the initial equation set may be esti- 
mated. When these are small compared to the terms that are kept in the equatfon 
set, it is indicated that the assumptions leading to the dropping of these terms 
are correct. This evaluation was made in reference 3 for the laminar isothermal 
case, and it gave satisfactorily low values for the derivatives of velocity and 
temperature in the axial direction compared to the values of these derivatives 
in the radial direction. This is considered as a validation of the boundary- 
layer assumptions in the initial equation set for this work, since the momentum 
and diffusion equations appear in exactly the same form here as they do in ref- 
erence 3. An exception to this is the axial-expansion term that is sometimes 
used in the momentum equation. The axial-expansion term is, however, a separate 
approximation and brings in its own loss of accuracy, which cannot be evaluated 
here. 

The second test of the accuracy of this analysis is whether or not it w i l l  
fit experimental data. It is important that the predicted values compare with 
the measured ones, and also that the shapes of predicted c m e s  follow closely 
those of the experimental curves. 

Correlation of Experimental Results 

There are relatively few experimental data f o r  the mixing of coaxially flow- 
ing fluids that are applicable for a check of this analysis. Two applicable sets 
of data are selected from the literature for separate specific reasons. Since no 
published experimental work could be found for the case of simultaneous heat, 
mass, and momentum transfer, one of the cases chosen is for combined heat and 
momentum transfer, and the other is for combined mass and momentum transfer. 
There is a l so  no experfmental work for energy-generating gases, so the calculated 
results for the cases wlth energy generation stand without any conclusive evi- 
dence of an accurate formulation of the problem. 
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The work of reference 7 f o r  a hot -a i r  - cold-air  coaxial-flow system was 
chosen as representa t ive  of combined heat- and momentum-transfer data because of 
the  e f f o r t  made t o  obtain ini t ia l  slug-flow ve loc i ty  p r o f i l e s  i n  the  equipment 
and because ve loc i ty  and temperature p ro f i l e s  were supplied. The air-bromine 
d&a of reference 6 were chosen f o r  the combined m a s s -  and momentum-transfer data 
because of t h e  high molecular-weight r a t i o  {about 5) of t he  two fluids used. 

Figure 2 shows t y p i c a l  data from reference 7 with the  curve f i t  from the  
analysis .  
data and ana lys i s .  The t rends  of t h e  data a r e  f i t t e d  very wel l  by t h e  ana ly t i -  
c a l  curves with a s ing le  value of K. The corresponding temperature p ro f i l e s  
a r e  shown i n  f igure  Z(b). The agreement i s  not  as good as i n  t h e  ve loc i ty  pro- 
f i l e s  because of t h e  deviation of t h e  ana ly t i ca l  curve from t h e  data a t  an a x i a l  
s t a t i o n  of = 13.3. T h i s  deviation would almost vanish, however, if t h e  asym- 
metry i n  the  data were removed. 
square data points ,  which a r e  the  o r ig ina l  data moved inward until t he  peak- 
temperature data pojnt  f a l l  on the  flow axis. For t h e  th ree  appl icable  cases of 
reference 7, t h e  value of  K obtained was 0.0047+0~0002 with t h e  exponent 
m = 112. 

In f igu re  2(a)  t he  ve loc i ty  p ro f i l e s  show very good agreement between 

T h i s  i s  i l l u s t r a t e d  i n  t h e  f igu re  2(b) by the  

The work of reference 6 i s  ac tua l ly  a spec ia l  case of t h e  present analysis. 
The ana lys i s  of reference 6 i s  smaller in scope, but t he  equation s e t  derived 
here reduces t o  t h e  s e t  derived there .  Figure 3(a) shows average concentration 
against  axial dis tance f o r  a case that  appea red to  be laminar flow along with the  
ana ly t i ca l  curve calculated with t h e  same i n i t i a l  conditions. The agreement is 
very good. 
ana ly t i ca l  curve. The axial varSation of p ~ / p  i s  taken independent of z i n  
reference 6, and t h e  calculated value of K i s  0.108. There i s  very poor agree- 
ment between the  two s e t s  of data since,  even after correct ing i n  an approximate 
way f o r  t he  axial va r i a t ion  of 
values of t h e  constants. T h i s  discrepancy cannot be r e c t i f i e d  u n t i l  more data 
become ava i lab le  f o r  various systems. 
of t h e  empirical  constants obtained from the  data  of reference 7 will be used 
because those data include ve loc i ty  and temperature prof i les .  

Figure 3cb) shows data  f o r  a turbulent  run along with t h e  b e s t - f i t  

p ~ / p ,  t he re  i s  a f a c t o r  of 5 between the  two 

In t h e  following calculat ions,  t h e  values 

The good agreement between t h e  data and t h e  ana lys i s  does not cons t i t u t e  a 
va l ida t ion  of t h e  physical-property assmpt ions  because t h e  energy-equation check 
was based on data f o r  a system with a molecular-weight r a t i o  of 1. 

Sample Results and Discussion of Heat-Generation Terms 

Calculations were made with the  computer program t o  i l lustrate t h e  e f f e c t s  
of the  heat-generation terms i n  the  equation s e t  and t o  present some sample r e -  
s u l t  s. 

Figures 4 t o  10 a r e  concerned with s i x  cases computed from the  analysis .  
They a l l  have the  stme physical-property input,  t he  same in i t ia l  ve loc i ty  and 
molecular-weight r a t i o s ,  and the  same f la t  temperature p ro f i l e s .  They d i f f e r  i n  
t h a t  t he re  a re  laminar and turbulent  flows f o r  each of t h e  three cases with vary- 
i n g  energy-generation terms. 
t he  second has a prescribed generation r a t e  i n  the  inner stream, but does not 

The first case has no internal energy generation; 
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include the  wall-assumption termi and the  t h i r d  case has t h e  sane heat-generation 
r a t e  as the  second case, but  a l s o  includes t h e  wall-assumption term. 

Figure 4 shows ve loc i ty  p r o f i l e s  f o r  three cases of laminar f l o w  with almost 
s imi la r  i n i t i a l  conditions.  
ure 4(b) i s  a case with heat generation, but with 
and f igu re  4(c) i s  a case with t h e  same heat generation and t h e  wall assumption 
(a = 1). 

Figure 4(a) i s  a case with no heat generation; f i g -  
a = 0 (no w a l l  assumption)j 

The p ro f i l e s  f o r  a l l  th ree  cases a r e  smooth S-shaped curves a f t e r  t h e  i n i -  
t i a l  face.  The important cha rac t e r i s t i c s  of the curves a r e  t h e  accelerat ion of 
t he  cen t r a l  streamline and the  momentum spreading of t h e  inner  stream. The case 
with no heat generation shows an undisturbed cen t r a l  streamline and very l i t t l e  
spreading of t h e  inner  stream a t  an axial s t a t i o n  27.89 radii downstream (z =t 27.89). 
is again undisturbed, but t h e  inner  stream has spread t o  more than double i t s  
i n i t i a l  radius a t  T =  26.08. Since this i s  e s sen t i a l ly  f r e e  j e t  flow, a l l  the  
expansion due t o  heating takes  place r ad ia l ly .  The case of heat generation with 
a = 1, however, shows a c e n t r a l  streamline accelerated t o  about six times the  
i n i t i a l  veloci ty  and a spreading of t he  inner  stream, which i s  s l i g h t l y  more than 
f o r  t he  case of no heat generation, but much l e s s  than f o r  t h e  case of a = 0. 

For the  case of heat generation and a = 0, the  cen t r a l  streamline 

Three cases of turbulent  flow with i n i t i a l  conditions that were i d e n t i c a l  t o  
the  laminar ones, except f o r  t he  turbulence condition, were a l s o  computed. The 
ve loc i ty  p ro f i l e s  a r e  shown i n  f igu re  5. For t h e  case of no heat generation 
( f ig .  5 (a ) ) ,  the  center  streamline has been accelerated t o  about 28 t h e s  t h e  
i n i t i a l  value a t  z = 26.52, and t h e  mixing region extends f a r t h e r  into t he  inner  
stream s o  t h a t  t h e  inner stream appears t o  have shrunk a l i t t l e  in radius. The 
case of heat generation and a = 0 ( f i g .  5 (b) )  exhib i t s  a cen t r a l  streamline that 
has been accelerated t o  a value about 24 times t h e  i n i t i a l  value and a small 
amount of spreading of t he  inner  stream a t  z = 29.77. The cen t r a l  streamline 
accelerat ion i n  the  case of no heat generation i s  an ind lca t ion  of the  magnitude 
of t h e  momentum d i f f u s i v l t y  e f f e c t ,  s ince there  is  no temperature-induced accel-  
e ra t ion .  The c e n t r a l  streamline accelerat ion in t h e  case of heat generation with 
a = 0 i s  an ind ica t ion  of t he  magnitude of t he  e f f e c t  of t h e  temperature r i s e ,  
s ince the  inner  stream i s  spreading and the  cen t r a l  streamline i s  not a f fec ted  
much by the  outer  stream at  these  r e l a t i v e l y  low values of z. T h i s  i s  borne out 
i n  f igure  5(c) ,  which shows t h e  ve loc i ty  p ro f i l e s  f o r  t he  case of heat generation 
with a = 1. The cen t r a l  streamline has accelerated t o  a ve loc i ty  about 38 times 
the  ini t ia l  value, which i s  considerably more than that i n  e i t h e r  figure 5(a)  
or (b) ,  T h i s  l a rge  value i s  due t o  t h e  combined e f f e c t s  of t h e  momentum diffu-  
s i v i t y  and t h e  temperature r i s e .  The inner stream has shrunk. s l i g h t l y  i n  radius 
s o  that the  outer  stream has had more of a chance t o  a c t  on t h e  cen t r a l  stream- 
l i n e  than in t h e  case with a = 0-  

- 

- 

- 

The concentration p r o f i l e s  f o r  t he  cases just discussed a r e  shown i n  f i g -  
ures 6 and 7 for laminar and turbulen t  flow, respectively.  The Important char- 
a c t e r i s t i c s  i n  these f igures  a r e  the center l ine  concentration (mole f r ac t ion )  and 
t h e  mass sp readbg  of t h e  inner  stream. 
erat ion.  The center l ine  concentration i s  about 0.41 a t  = 27.89, and the  inner  
stream has shrunk s l i g h t l y  i n  radius. 
t i o n  with a = 0, t h e  center l ine  concentration i s  about 0-59 a t  

Figure 6(,a) is the case of no heat gen- 

ln f igu re  6(b),  t h e  case of heat genera- 
E'= 26.08, and 
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t h e  inner  stream has spread t o  about double i t s  ini t ia l  radius. 
t h e  case of heat  genera,tion with a = 1, the center l ine  concentration i s  about 
0.64 a t  y =  27.49, and t h e  inner stream has spread only s l i g h t l y  from i t s  in i -  
t i a l  radius. It is  important t o  note that t h e  inc lus ion  of the heat-generation 
term f o r  t he  laminar cases leads t o  higher center l ine  concentrations, T h i s  i s  
due t o  temperature-induced accelerat ion,  which causes t h e  inner-stream f l u i d  t o  
spend less time in t h e  region 0 5 30, and there  is  less mass t r a n s f e r  i n  
the  region. 

I n  f igu re  6(c) ,  

Figure 7 shows the turbulent-flow cases with center l ine  ve loc i t i e s  of about 
0.15 t o  0.20 a t  
s l i g h t  shrinkage f o r h e a t  generation and a = 0, and moderate shrinkage f o r  heat 
generation and a =L 1. In turbulent  flow, t h e  eddy d i f f u s i v i t y  is r e l a t i v e l y  s o  
la rge  that t h e  i n t e r e s t i n g  e f f e c t  noted previously i s  masked. 

x= 28 and l a rge  inner-stream shrinkage f o r  no heat generation, 

The temperature p ro f i l e s  f o r  t h e  same cases a r e  shown in  f igures  8 and 9 
f o r  laminar and turbulen t  flow, respect ively.  Only t h e  cases with heat genera- 
t i o n  a re  shown, s ince  the  ini%ial  temperature p r o f i l e s  i n  these cases were f la t .  
Figures 8(a) and (b )  a r e  f o r  Laminar flow with and a = 1, respect ively.  
The only observation of any importance t o  be made i s  the  r e l a t i v e  spreading of 
inner-stream temperature. In f igu re  8(a), t h e  inner stream has spread t o  almost 
double i t s  ini t ia l  radius  a t  z = 26.08, and the  mixing region i s  th in ,  as shown 
by the  sharp cutoff i n  temperature. I n  f igu re  8(b) ,  t h e  inner  stream has spread 
only s l i g h t l y  a t  z =L 27.49, and t h e  mixing region i s  s t i l l  r e l a t i v e l y  th in .  
For the  turbulent-flow cases of f igures  9(a)  and (b) ,  t he  spreading i s  much l e s s  
pronounced, and t h e  mixing region i s  qui te  la rge ,  on the  order of t h e  inner-  
stream in i t i a l - r ad ius  s ize ,  a t  a z of about 29. For both cases t h e  inner  
stream has shrmnk t o  some extent.  

a = 0 

- 
- 

- 

The streamlines f o r  t he  cases just discussed show c l e a r l y  the  value of t h e  
wall-assumption term. ThZs is  a term added t o  t h e  momentum equation that, when 
a = 1, forces  a l l  t h e  f l u i d  expansion due t o  energy generation t o  occur along a 
streamline. 

Figure l O ( a )  shows streamlines for t he  th ree  cases of laminar flow. The 
s o l i d  l i n e s  ( f o r  t h e  case of a = 0) depart g r e a t l y  from the  c i r c l e s  representing 
the  case of no heat generation. The dashed l i n e s  representing t h e  case of a = 1 
follow closely t h e  values f o r  no heat generation a t  values of r of about 0.3 

comparison can be made with values there ,  t h e  case wlth no heat generation i s  not 
shown near an r of 1. 

- 
. and 2. Since t h e  w a l l  assumptlon i s  poor i n  the  m i x i n g  region and no useful 

- 
For turbulent  flow ( f i g .  10(b)), t h e  case with a = 1 again fa l ls  c loser  

t o  the  no-heat-generation values than t h e  case with a = 0. For turbulent  flow, 
however, the  divergence of any one case from any other  i s  s m a l l ,  It should be 
emphasized t h a t  a l l  that i s  shown i n  f igure  10(b)  is t h a t  t h e  w a l l  assumption 
does s t r a igh ten  out t h e  streamlines of cases with heat generation s o  t h a t  they 
approxhate  the  streamlines t h a t  would occur with an a c t u a l  w a l l  present.  No 
comparison with experimental data i s  made t o  show the accuracy of t he  assumption. 

20 



Inner-Stream Containment 

Figure 11 shows p lo t s  of inner-stream containment as a function of i n i t i a l -  
ve loc i ty  r a t i o .  
the  inner  stream and laminar and turbulent  flow, respectively.  It i s  seen f o r  
both cases t h a t  increasing t h e  molecular weight of t he  inner  stream and decreas- 
ing the  i n i t i a l  ve loc i ty  r a t i o  increase t h e  contabnent  f ac to r .  

Figures l l ( a )  and (b)  a r e  f o r  cases of heat generation only i n  

For turbulent  flow the  va r i a t ion  in  c2 has a g rea t e r  e f f e c t  than f o r  l a m -  
i n a r  flow. 
f o r  laminar flow than f o r  turbulent  flow a t  low values of 
5). When Ti2 i s  large,  however, t he  l a m i n a r  values a re  severa l  times l a rge r  
than t h e  turbulent  ones. For the  case of heat generation i n  both streams and 
l a m i n a r  flow, increasing the  i n i t i a l  ve loc i ty  r a t i o  decreases the  containment 
fac tor ,  but not t o  the  same extent  as f o r  heat generation i n  the  inner stream 
only, 
mer case and the  f lu ids  spend l e s s  time i n  the  region of i n t e r e s t .  It i s  a l s o  
seen t h a t  the  molecular-weight va r i a t ion  has no c l ea r  e f f e c t  on t h e  containment 
f ac to r .  The reason is that the  pure-component specif ic-heat  r a t i o  var ies  in-  
versely with molecular weight f o r  i d e a l  gases, and t h i s  va r i a t ion  absorbs a grea t  
deal  of the  e f f ec t  of t he  molecular-weight var ia t ion.  The f i n a l  case of heat 
generation i n  both streams with turbulent  flow shows cha rac t e r i s t i c s  similar t o  
those i n  the  case of heat generation i n  one stream with turbulent  flow. The con- 
tainment f a c t o r  decreases with increasing u2 and increases with increasing p .  
The values of t he  containment f a c t o r  a r e  lower f o r  this  case, however, s ince both 
streams a r e  accelerat ing and the  momentum t r a n s f e r  i s  greater .  

A l s o ,  t he  values of t h e  containment f ac to r  a r e  only s l i g h t l y  higher - 
u2 ( l e s s  thaa about 

This i s  due t o  the  f a c t  t h a t  t h e  whole system is accelerat ing in t he  for-  

- 

In  this report ,  an ana lys i s  of t h e  mixing of coaxial  streams of dissimilar 
f l u i d s  is presented. The analysis  i s  based on c e r t a i n  assumptions such as 
boundary-layer simplifFcations, constant pressure i n  t h e  flow f i e l d ,  a simple 
approximation f o r  a boundary wall f o r  cases with i n t e r n a l  heat generation t o  
s h u l a t e  channel flow, and a given turbulence re la t ion .  The analysis  yielded 
an equation s e t  that was solved numerically. The results were checked against  
two s e t s  of experimental r e s u l t s ,  and the  wall assumption used was evaluated as 
t o  i t s  e f f e c t  on t h e  flow. The following r e s u l t s  were obtainedr 

1. The calculated values agreed wel l  with two s e t s  of published data. 

2, For the  data of NASA MENO 12-21-583, f o r  coaxial  hot and cold airflow, 
t h e  turbulence r e l a t i o n  obtained was 

where p2,o i s  t h e  outer-stream mass densi ty  a t  z = 0, B is t h e  eddy d i f fu-  
Sitri tyJ p2 0 i s  the  outer-stream v i scos i ty  a t  z = 0, 3 is t h e  dimensionless 
axial l e d h  var iable ,  Rel,o i s  t h e  inner-stream Reynolds number a t  z = 0, 
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and is the dimensionless outer-stream axial velocity component. This re- 
lation was used for the remaining calculations. 

is the dimensionless outer-stream viscosity, P is a molecular-weight factor, 

3.  The data of Ragsdale and Weinstein for coaxial flow of bromine and air 
yielded the turbulence relation 

There was poor agreement between the hot-air - co .d-air correlation and the 
bromine-air correlation even after the z dependence wits included in the latter. 

4. The w a l l  assumption, which consisted of forcing all the expansion caused 
by energy generation to occur along a streamline, gave relatively straight 
streamlines far from the mixing region, as was desired. 

5. The containment factor generally increased with increasing molecular- 
weight ratio and decreased with increasing initial velocity ratio. 

6. The containment factor decreased with increasing internal heat-generation 
rate and was affected more by heat generation in the outer stream than by heat 
generation in the inner stream. 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, October 22, 1963 
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APPEXVDIX - NUMERICAL METHOD 

I n  the  following discussion a l l  bars  a re  deleted as  a matter of conven- 
ience.  

The equations describing t h e  hydrodynamic system a r e  

Momentum: 

aU p + l a  a G  
= “ R e  % 

Diffusion x 

Energy! 

Continuity: 

where 
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includes heat-generation term i n  eq. ( A l )  

excludes heat-generation term i n  eq. ( A l )  

The solut ions of equations ( A l )  t o  (A4)  a r e  t o  be found on t he  f i n i t e  s t r i p  
( 0  5 $ 5 $mx, 0 5 z <, Z m a x ) ,  given t h e  following boundary and i n i t i a l  condi- 
t i ons  : 

max' 2) = 0 J 
where u2 and T2 a r e  prescribed ve loc i ty  and temperature r a t io s ,  and 

U(@,O> = r,W 

c ( ~ )  r 2 W  

T ( W )  = Y3($) 

Since 
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equations (AB) t o  (AlO) can be determined In terms of $ 1  

Correspondingly, r($,O) can be defined as 

With c*, v* T*, and r* defined as approximate solut ion vectors of equa- 
z, equation (AI-) can be rewri t ten i n  a l i n -  t ions  (Al) t o  (A45 a t  some length 

ear ized form as 

or 

where 
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Similar ly ,  equations (A2) 
with coef f ic ien ts  defined 

J aG* 
cub!) = 

c p c *  + 1) 

and (A3) can be put i n t o  t h e  form of equation (Al6) 
as 

\ 

and 

k*r*2u*(j3c* + 1) 
T* 

BJw = 

P G *  
cT(*) = 

With the  s t r i p  R overlayed with a number of rectangles  of dimensions A$ 
by Az, a g r i d  or mesh i s  constructed. I f  the  nota t ion  R i , j  denotes the  ith, 
jth point on the  mesh, then U ( ~ - J , Z J )  u1,j can be defined as the  funct ional  
value of u($,z) assoc ia ted  with the  g r i d  point %,J. 

U s i n g  equation (A16) as a general  form and expanding give 

The der ivat ive approximates a t  a point R i , j  a r e  defined impl i c i t l y  as 

26 
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Subs t i tu t ion  of equations (A21) t o  (A23) i n t o  equation (AZO) y ie lds  

Equation (A24) i s  v a l i d  only on the  i n t e r i o r  of t he  g r i d  (i.e.,  
i = 2,3, . . ., n - 1). The boundary conditions (e.g., eqs. (A5) and ( A 6 ) )  m u s t  
be applied t o  obtain similar equations a t  i = 1 and n. Hence, applying equa- 
t i o n  (A5) t o  equation (A20) r e s u l t s  i n  

and u t i l i z i n g  equation (A6) y ie lds  

where (u i s  %(qmx) as given by equation ( A 1 7 ) .  

When i var ies  from 1 t o  n (L.e., @ = o t o  $ = qmx), a linear t r i d i ag -  
onal system of equations i s  generated of t h e  form 
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with 

0 

'i42 

9 3  

0 

v3 

. 

. . .  
. . .  

0 . . .  

Ul J j+1 

u2 J j+l 

3, j+l U 

* 

i = 2,3, . . . J  n-1 

91 

9 2  

93 

gll . .  

B l  

AJr2 
= - 

B1 v1 = - 

i = 2,3, . . J  n - 1 
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The so lu t ion  of equation (A27)  is e f fec ted  by t r iangular iz ing  the  matrix 
and by a back subs t i tu t ion .  
t i o n  

Triangular izat ion i s  accomplished by the  transforma- 

i = 2 ,3 ,  . . ., n 4 ei-1 
gi-1 9; = @i - 

!a; = g1 

i = 2,3,  . . ., n 4 gi-1 
%-1 

!a; = gi - 

The back subs t i t u t ion  i s  e f fec ted  by 

1 
7 

If a s i m i l a r  argument i s  followed, solut ion vectors of Ci , j+ l  and T i , j + l  can 
be computed. Define 

J 
I f  A,, A,, and A < a ,  where a i s  some prescribed tolerance,  t he  solut ion t o  
equations ( A l )  t o  yA4) have been ef fec ted  f o r  a given z-  I f  4 >a,,  however, 
t he  coef f ic ien ts  A, B, and C of equations (A171 t o  (A19) may be computed with 
the  values of u i , j+ l ,  C i  j+l, and T i , j + l .  The i t e r a t i o n  procedure i s  then r e -  
peated u n t i l  convergence Is obtained. 

The i t e r a t i o n  procedure was programmed i n  Fortran I1 f o r  the  I B M  7090. A l -  
though the  s tabi l i ty  of t he  so lu t ion  i s  guaranteed by the  use of t h e  impl ic i t  
scheme, t runcat ion e r r o r  i s  governed by t h e  s i z e  of Az. It was found that the  
i t e r a t i o n  procedure converged t o  a tolerance a, of within three  o r  four 
t r ia ls .  The time of running a pa r t i cu la r  so lu t ion  is ,  of course, determined by 
the  case input parameters; generally,  however, t he  time required t o  complete a 
so lu t ion  t o  an axial length of 30 i s  about 1.5 t o  2 minutes. 
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Calculations 
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( b )  Temperature profiles.  

Figure 2. - Concluded. Analytical f i t  of data from reference 7. 
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(a )  Laminar fl-ow. Air Reynolds number, 1038; bromine Reynolds number, 200; 
i n i t i a l  r a t i o  of outer- t o  inner-stream velocity,  4.3. 

Figure 3. - Data from air-bromine coaxial-flow tests of reference 4. 
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(b )  Turbulent flow. 
i n i t i a l  r a t i o  of outer- t o  inner-stream velocity, 4.4. 
eddy diffusivi ty ,  E; viscosity,  1-1; subscript 1, inner stream; subscript 2, 
outer stream.) 

A i r  Reynolds number, 8308; bromine Reynolds number, 1186; 
(Mass density, p; 

Figure 3. - Concluded. Data from air-bromine coaxial-flow tests of reference 4. 
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(b )  Energy generation; no wall assumption; energy-generation term G = c/T, where c i s  
inner-stream concentration and T is temperature. 

Figure 4. - Continued. Velocity prof i les  for laminar f l o w .  
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( e )  Energy generation; w a l l  assumptionj energy-generation term G = c/T, where c is 
inner-stream concentration and T i s  temperature. 

Figure 4. - Concluded. Velocity p r o f i l e s  f o r  laminar flow. 
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(a)  No energy generation. 

Figure 5. - Velocity p ro f i l e s  f o r  turbulent flow. Flow fac to r ,  23. 
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( b )  Energy generation; no wall assumption; energy-generation term 
where c i s  inner-stream concentration and T is temperature. 

G = c/T, 

Figure 5. - Continued. Velocity p ro f i l e s  f o r  turbulent flow. Flow f ac to r ,  23. 
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( c )  Energy generation; wall assumption; energy-generation term G = c/T, 
where c i s  inner-stream concentration and T is temperature. 

Figure 5. - Concluded. Velocity prof i les  fo r  turbulent flow. Flow factor ,  23. 
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(b )  Energy generation; no w a l l  assumption; energy-generation term 
where c i s  inner-stream concentration and T i s  temperature. 

G = c/T, 

Figure 6. - Continued. Concentration prof i les  f o r  laminar flow. 



1. E 

1. i 

.e 

.4 

- 
\ 
- - ~  

J 

\ 

-1'. , I 

- \ + - Axial 
length, 

+- 
- z - 

0 
. 
\ 

14.20 - --- - 
27.49 1 -- - - 
a 

( e )  Energy generation; w a l l  assumption; energy-generation term G = c/T, 
where c i s  inner-stream concentration and T i s  temperature. 

Figure 6. - Concluded. Concentration p ro f i l e s  for laminar flow. 



Figure 7. 

Concentration, c 

( a )  No energy generation. 

- Concentration prof i les  fo r  turbulent flow. Flow factor, 23. 
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( b )  Energy generation; no w a l l  assumption; energy-generation term 
where c i s  inner-stream concentration and T i s  temperature, 

G = c / T ,  

Figure 7. - Continued. Concentration prof i les  fo r  turbulent flow. Flow factor ,  23. 



Ik 
n 

1. 

Concentration, c 

( c )  Energy generation; w a l l  assumption; energy-generation term G = c/T, 
where c is inner-stream concentration and T i s  temperature. 
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Figure 7. - Concluded. Concentration prof i les  for turbulent flow. Flow fac tor ,  23. 
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Figure 8. - Temperature p ro f i l e s  for laminar flow with energy 
generation. Energy-generation term G = c/T, where c i s  
inner-stream concentration and T i s  temperature. 
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Figure 8. - Concluded. Temperature p ro f i l e s  for laminar flow 
with energy generation. Energy-generation term G = c/T, 
where c i s  inner-stream concentration and T i s  tempera- 
ture .  
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(a) No wall assumption. 

Figure 9. - Temperature profiles for turbulent flow with energy generation. Flow factor, 23; 
energy-generation term G = c/T, where c is inner-stream concentration and T is temper- 
ature. 
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Figure 9. - Concluded. Temperature p r o f i l e s  f o r  turbulent  flow with energy generation. Flow f a c t o r ,  23; 
energy-generation term G = c/T, where c is inner-stream concentration and T is  temperature. 
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Figure 10. - Effect  of energy-generation assumption on streamlines. Energy-generation 
term G = c/T, where c i s  inner-stream concentration and T is  temperature. 
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Figure 10. - Concluded. E f fec t  of energy-generation assumption on s t reaml ines .  Energy-generation 
term G = c/T, where c is  inner-s t ream concent ra t ion  and T is temperature.  
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( a )  Laminar flow with energy generation i n  
inner stream. Energy-generation term 
G = 0.3c/T, where c i s  inner-stream 
concentration and T i s  temperature. 

Figure 11. - Effect of var ia t ion  of i n i t i a l  ve- 
l o c i t y  r a t i o  on containment f ac to r .  Reynolds 
number, 1000; Schmidt number, 1; F’randtl nun- 
ber,  1; molecular volume, 0.47; i n i t i a l  ve- 
l o c i t y  r a t i o ,  0.20; i n i t i a l  spec i f ic  heat,  
p + 1; i n i t i a l  conductivity r a t i o ,  25; length, 
30; w a l l  assumption. 
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Turbulent flow with energy generation i n  
inner stream. Energy generation term 
G = 0.5c/T, where c i s  inner-stream 
concentration and T is  temperature. 

Figure 11. - Continued. Effect  of va r i a t ion  of 
i n i t i a l  ve loc i ty  r a t i o  on containment fac tor .  
Reynolds number, 1000; Schmidt number, 1; 
Prandt l  number, 1; molecular volume, 0.47; 
i n i t i a l  ve loc i ty  r a t i o ,  0.20; i n i t i a l  spec i f i c  
heat, P + 1; i n i t i a l _ c o n d u c t i v i t y  r a t i o ,  25; 
length,  30; wall assumption. 

55 



11l111111111l111111111lllllllll I II IIIIIIII IIIIIIII 

.2c 

IH 

k 
.\ 

$ .16 
: 
-G 
k 

3 .12 
.A 
cd 
-P c 
0 u 

.08 

I l l  
‘ I  I 

t Molecular- 
weight 

factor’ P t i  

- 
I n i t i a l  ve loc i ty  r a t i o ,  u2 

( e )  Laminar flow with energy generation i n  
both streams. Energy generation t e r m  
G = 0.3c/T +0 .3 ,  where c i s  inner-stream 
concentration and T i s  temperature. 

Figure 11. - Continued. Effect  of var ia t ion  of 
i n i t i a l  ve loc i ty  r a t i o  on containment fac tor .  
Reynolds number, 1000; Schmidt number, 1; 
F’randtl number, 1; molecular volume, 0.47; 
i n i t i a l  ve loc i ty  r a t i o ,  0.20; i n i t i a l  spec i f ic  
heat ,  P + 1; i n i t i a l  conductivity r a t i o ,  25; 
length, 30; w a l l  assumption. 
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( d )  Turbulent flow w i t h  energy generation i n  
both streams. Energy generation term, 
G = 0.5c/T + 0.5, where c is  inner-stream 
concentration and T i s  temperature. 

Figure 11. - Concluded. Effect of var ia t ion  of 
i n i t i a l  ve loc i ty  r a t i o  on containment factor .  
Reynolds number, 1000; Schmidt number, 1; 
Prandtl  number, 1; molecular volume, 0.47; 
i n i t i a l  veloci ty  r a t i o ,  0.20; i n i t i a l  spec i f ic  
heat, p + 1; i n i t i a l  conductivity r a t i o ,  25; 
length, 30; w a l l  assumption. 
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